Data Science syllabus and project building.

★ Section 1: Introduction to Data Science

- **1** What is Data Science?
 - Definition and Scope
 - History and Evolution
 - Difference between Data Science, Data Analytics, Data Engineering, and Business Analytics
 - Applications of Data Science in Industries

2 Data Science Process

- Problem Definition
- Data Collection
- Data Cleaning and Preparation
- Exploratory Data Analysis (EDA)
- Feature Engineering
- Model Building
- Model Evaluation
- Deployment
- Model Monitoring

3 Tools & Technologies in Data Science

- · Programming Languages: Python, R
- IDEs: Jupyter, VS Code, Spyder
- Libraries and Frameworks:
 - Python: Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, TensorFlow, Keras, PyTorch
 - o R: dplyr, ggplot2, caret

- Database: SQL, MongoDB
- Big Data Tools (overview): Hadoop, Spark
- Cloud Platforms (overview): AWS, GCP, Azure

Section 2: Programming for Data Science (Python Focused)

- Python Basics (covered in previous syllabus)
- Numpy (Numerical Python)
 - o Arrays creation and manipulation
 - Array slicing, indexing
 - Mathematical operations
 - Broadcasting
- Pandas (Data Manipulation)
 - Series and DataFrame
 - Reading and writing data (CSV, Excel, JSON)
 - Handling missing data
 - Data filtering, sorting, merging, grouping
- Matplotlib and Seaborn (Data Visualization)
 - o Basic plots: Line, Bar, Histogram, Scatter, Pie
 - Customizing Plots
 - Subplots
 - o Seaborn specialized plots: Boxplot, Heatmap, Pairplot, Violinplot

★ Section 3: Statistics for Data Science

1 Descriptive Statistics

- Measures of Central Tendency (Mean, Median, Mode)
- Measures of Dispersion (Range, Variance, Standard Deviation)
- Percentiles and Quartiles
- Probability

- Basic Probability Theory
- Conditional Probability
- Bayes' Theorem
- Probability Distributions:
 - Normal Distribution
 - o Binomial Distribution
 - Poisson Distribution

3 Inferential Statistics

- Sampling Techniques
- Hypothesis Testing
 - o Null and Alternative Hypothesis
 - o t-test, z-test, ANOVA
 - o Chi-Square Test
- Confidence Intervals
- Correlation and Covariance

🖈 Section 4: Data Preprocessing and Cleaning

- Handling Missing Data
- Handling Duplicates
- Outlier Detection and Treatment
- Data Encoding (Label Encoding, One-Hot Encoding)
- Feature Scaling (Normalization, Standardization)
- Feature Selection and Extraction

Section 5: Exploratory Data Analysis (EDA)

- Data Understanding
- Univariate, Bivariate, and Multivariate Analysis
- Data Visualization Techniques

- Detecting patterns, relationships, anomalies
- Heatmaps, Pairplots, Histograms, Boxplots

Section 6: Machine Learning Fundamentals

1 Introduction to Machine Learning

- Types of Machine Learning:
 - Supervised Learning
 - o Unsupervised Learning
 - o Reinforcement Learning

2 Supervised Learning

- Linear Regression
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naïve Bayes

3 Unsupervised Learning

- K-Means Clustering
- Hierarchical Clustering
- Principal Component Analysis (PCA)

Model Evaluation Metrics

- Confusion Matrix
- Accuracy, Precision, Recall, F1-Score
- ROC-AUC Curve
- Cross Validation (K-Fold, Stratified K-Fold)

★ Section 7: Deep Learning (AI)

- Introduction to Deep Learning
- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- LSTM (Long Short-Term Memory)
- TensorFlow and Keras basics
- Activation Functions
- Loss Functions
- Optimizers

Section 8: Natural Language Processing (NLP)

- Text Preprocessing (Tokenization, Stopwords Removal, Lemmatization, Stemming)
- Bag of Words (BoW) Model
- TF-IDF (Term Frequency Inverse Document Frequency)
- Word Embeddings (Word2Vec, GloVe)
- Sentiment Analysis
- Text Classification
- Named Entity Recognition (NER)

Section 9: Time Series Analysis

- Introduction to Time Series Data
- Time Series Components: Trend, Seasonality, Noise
- Moving Averages, Exponential Smoothing
- ARIMA, SARIMA Models
- Stationarity and Differencing
- Forecasting

★ Section 10: Big Data & Cloud Integration (Optional / Advanced)

- Introduction to Big Data
- Hadoop Ecosystem
- Apache Spark and PySpark
- Working with AWS S3, Lambda for Data Storage and Deployment
- Cloud ML services overview

* Section 11: Project Management and Deployment

- Working with Git and GitHub
- Creating Dashboards (Streamlit, Dash)
- API Integration
- Model Deployment (Flask, FastAPI)
- Using Docker for ML Model Deployment
- Model Monitoring and Maintenance

★ Suggested Projects

Beginner Projects

- Exploratory Data Analysis on Titanic Dataset
- Predicting House Prices
- Movie Recommendation System

Intermediate Projects

- Credit Card Fraud Detection
- Customer Segmentation using Clustering
- Sentiment Analysis of Tweets

Advanced Projects

- Real-time Object Detection using CNN
- Stock Price Prediction
- Resume Parser with NLP

Time Series Forecasting for Electricity Demand